Journal of Nursing

The Progress of Aptamers in the Detection of SARS-CoV-2

Yiming Tang, Jiayun Liu

Abstract


SARS-CoV-2 has caused millions of deaths worldwide since its outbreak and will continue to cause large-scale global infections, so it is of great significance for the prevention and control of diseases caused by this virus to develop rapid and portable detection methods. Currently, PCR detection of SARS-CoV-2 is generally time-consuming and complicated, while aptamers, as a new type of biorecognition that can specifically recognize small molecules such as proteins, nucleic acids, oligonucleotides, etc., have a great potential and advantage in the detection of SARS-CoV-2. This review briefly describes the detection principle, characteristics and specific applications of aptamers combined with biosensor technology in the detection of SARS-CoV-2, and discusses the advantages, challenges and future development tendency in the area of SARS-CoV-2 detection.


Keywords


Aptamer; SARS-CoV-2; Detection

Full Text:

PDF

Included Database


References


V'Kovski, P., et al., Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol, 2021. 19(3): p. 155-170.

Yang, H. and Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol, 2021. 19(11): p. 685-700.

Boucau, J., et al., Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA.1) Infection. N Engl J Med, 2022. 387(3): p. 275-277.

Gao, S.J., H. Guo, and G. Luo, Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J Med Virol, 2022. 94(4): p. 1255-1256.

Wang, Q., et al., Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. cell, 2023. 186(2): p. 279-286.e8.

Peeling, R.W., et al., Diagnostics for COVID-19: moving from pandemic response to control. Lancet, 2022. 399(10326): p. 757-768.

Safiabadi Tali, S.H., et al., Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. clin. Microbiol Rev, 2021. 34(3).

Li, Y., et al., The application of Aptamer in biomarker discovery. Biomark Res, 2023. 11(1): p. 70.

Ni, S., et al., Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Applied Materials & Interfaces, 2021. 13(8): p. 9500-9519.

Wu, L., et al., Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical Reviews, 2021. 121(19): p. 12035-12105.

Zhou, J. and J. Rossi, Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov, 2017. 16(3): p. 181-202.

Jackson, C.B., et al., Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 2022. 23(1): p. 3-20.

Kopecky-Bromberg, S.A., et al., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol, 2007. 81(2): p. 548-57.

Meyer, B., C. Drosten, and M.A. Müller, Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res, 2014. 194: p. 175-83.

Lu, R., et al., Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. lancet, 2020 . 395(10224): p. 565-574.

Vandelli, A., et al., Structural analysis of the SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Res, 2020. 48(20): p. 11270- 11283.

Xu, X., et al., Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. sci China Life Sci, 2020. 63(3): p. 457-460.

Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6).

Chang, C.K., et al., Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci, 2006. 13(1): p. 59-72.

Surjit, M., et al., The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem, 2006. 28(16): p. 10669-8. kinase complex and blocks S phase progression in mammalian cells. J Biol Chem, 2006. 281(16): p. 10669-81.

Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. nature, 1990. 346(6287): p. 818-22.

Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. science, 1990. 249( 4968): p. 505-10.

Gelinas, A.D., D.R. Davies, and N. Janjic, Embracing proteins: structural themes in aptamer-protein complexes. Curr Opin Struct Biol, 2016. 36: p. 122- 32.

Chen, L., et al., The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. proc Natl Acad Sci U S A, 2015. 112(32): p. 10002-7.

Geiger, A., et al., RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res, 1996 . 24(6): p. 1029-36.

Subjakova, V., et al., Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochimica Acta,. 2021. 389: p. 138724.

Li, Z., et al., Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: review. sensors (Basel) , 2019. 19(24).

Curti, F., et al., A Folding-Based Electrochemical Aptasensor for the Single-Step Detection of the SARS-CoV-2 Spike Protein. ACS Appl Mater Interfaces , 2022. 14(17): p. 19204-19211.

Amouzadeh Tabrizi, M., L. Nazari, and P. Acedo, A photo-electrochemical aptasensor for the determination of severe acute respiratory syndrome coronavirus 2 receptor-binding domain by using graphitic carbon nitride-cadmium sulfide quantum dots nanocomposite. sensors and Actuators B. Chemical, 2021. 345: p. 130377.

Sivakumar, R. and N.Y. Lee, Recent advances in airborne pathogen detection using optical and electrochemical biosensors.Anal Chim Acta, 2022. 1234: p. 340297.

Caballos, I., et al., Aptamer-Capped Nanoporous Anodic Alumina for SARS-CoV-2 Spike Protein Detection. Advanced Materials Technologies, 2023. 8(11).

Liu, J., et al., A Rapid SARS-CoV-2 Nucleocapsid Protein Profiling Assay with High Sensitivity Comparable to Nucleic Acid Detection. Anal Chem, 2022. 94 (42): p. 14627-14634.

Lee, E.-S., et al., Fluorogenic Aptasensors with Small Molecules. Chemosensors, 2021. 9(3).

Wu, Y., et al., Colorimetric Sensors for Chemical and Biological Sensing Applications. Sensors (Basel), 2023. 23(5).

Vafabakhsh, M., et al., Paper-based colorimetric detection of COVID-19 using aptasenor based on biomimetic peroxidase like activity of ChF/ZnO/CNT nano-hybrid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023. 301: p. 122980.

Chotimah, S.N., et al., DNA Aptamer Gold Nanoparticle Colorimetric Diagnostic Test Kit of Saliva Samples for SARS_Cov2 Virus Linked to Mobile Phone Application (AptamexTM). medRxiv - Respiratory Medicine, 2022.

Nooranian, S., et al., Biosensors based on aptamer-conjugated gold nanoparticles: a review. Biotechnology and Applied Biochemistry, 2022. 69(4): p. 1517-1534.

Aithal, S., et al., SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. talanta, 2022. 236: p. 122841.

Daniel, S.C.G.K., et al., Handheld, Low-Cost, Aptamer-Based Sensing Device for Rapid SARS-CoV-2 RNA Detection Using Novelly Synthesized Gold Nanoparticles. IEEE Sensors Journal, 2022. 22(19): p. 18437-18445.

Najafabad, M.B., et al., A review on applications of gold nanoparticles-based biosensor for pathogen detection. advances in Natural Sciences. Nanoscience and Nanotechnology, 2022. 13(3): p. 033002.

Yang, L.F., et al., Aptamer Sandwich Lateral Flow Assay (AptaFlow) for Antibody-Free SARS-CoV-2 Detection. analytical Chemistry, 2022. 94(20): p. 7278-7285.

Yang, L.F., et al., SCORe: SARS-CoV-2 Omicron Variant RBD-Binding DNA Aptamer for Multiplexed Rapid Detection and Pseudovirus Neutralization. Analytical Chemistry, 2022. 94(37): p. 12683-12690.

Chen, H., et al., Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor. ACS Sens, 2021. 6(6): p. 2378-2385.

Chen, H., et al., Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor. ACS Sensors, 2021. 6(6): p. 2378-2385.

Park, K.S., et al., Ultra-sensitive label-free SERS biosensor with high-throughput screened DNA aptamer for universal detection of SARS-CoV-2 variants from clinical samples.

Biosensors and Bioelectronics, 2023. 228: p. 115202.

Zhang, K., et al., Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sensors, 2020. 5(12): p. 3721-3738.

Chang, C.C., Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors (Basel), 2021. 11(7).

Chen, R., et al., Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Microchimica Acta, 2021. 188(10): p. 316.

Chang, T.-C., et al. Integration of Power-Free and Self-Contained Microfluidic Chip with Fiber Optic Particle Plasmon Resonance Aptasensor for Rapid Detection of SARS-CoV-2 Nucleocapsid Protein. Biosensors, 2022. 12,

Yesudasu, V., H.S. Pradhan, and R.J. Pandya, Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon, 2021. 7(3): p . e06321.

Zeng, Huijun, et al., Application of nucleic acid aptamer biosensors in the detection of foodborne pathogenic bacteria. Food and Fermentation Industry, 2020. 46(17): p. 277-284.

Deng, J., et al., Rapid One-Step Detection of Viral Particles Using an Aptamer-Based Thermophoretic Assay. journal of the American Chemical Society,. Journal of the American Chemical Society, 2021. 143(19): p. 7261-7266.

Xing, W., et al., Customization of aptamer to develop CRISPR/Cas12a-derived ultrasensitive biosensor. talanta, 2023. 256: p. 124312.

Chen, C., et al., Aptamer-based nanointerferometer enables amplification-free ultrasensitive detection and differentiation of SARS-CoV-2 variants. Anal Chim Acta, 2023. 1260: p. 341207.




DOI: http://dx.doi.org/10.18686/jn.v12i3.290

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yiming Tang, Jiayun Liu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.