The progress of LCN2 in the kidney and central nervous system
Abstract
by inhibiting the production of inflammatory mediators. This makes Lcn2 a potential drug target for treating inflammatory diseases. It also
participates in the progression of tumors. Lcn2 inhibits tumor growth by inhibiting tumor cell growth and migration. Lcn2 is also involved
in the interaction between tumors and the immune system and may affect immunotherapy. In the process of metabolic regulation, Lcn2 can
regulate the differentiation and metabolism of adipocytes, affecting obesity and metabolic diseases. Lcn2 is involved in the regulation of iron
metabolism and liver inflammation. Lcn2 plays an important role in the nervous system. It may affect the development and survival of neurons and the development of neurodegenerative diseases. This article reviews the functions, mechanisms of action, biological significance,
and potential clinical applications of Lcn2 under different physiological and pathological conditions. Provide researchers and clinicians with
a comprehensive and accurate overview to better understand Lcn2, its function, and physiology, and its potential applications in pathological
processes, thereby promoting research and clinical applications in this field.
Keywords
Full Text:
PDFReferences
[1] Adler, O., Zait, Y., Cohen, N., Blazquez, R., Doron, H., Monteran, L., . . . Erez, N. (2023). Reciprocal interactions between innate immune cells and astrocytes facilitate neuroinflammation and brain metastasis via lipocalin-2. Nat Cancer, 4(3), 401-418. doi:10.1038/
s43018-023-00519-w.
[2] Courbon, G., Francis, C., Gerber, C., Neuburg, S., Wang, X., Lynch, E., . . . David, V. (2021). Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Res, 9(1), 35. doi:10.1038/s41413-021-00154-0.
[3] Dekens, D. W., Eisel, U. L. M., Gouweleeuw, L., Schoemaker, R. G., De Deyn, P. P., & Naudé, P. J. W. (2021). Lipocalin 2 as a
link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev, 70, 101414. doi:10.1016/j.arr.2021.101414.
[4] Gupta, U., Ghosh, S., Wallace, C. T., Shang, P., Xin, Y., Nair, A. P., . . . Sinha, D. (2023). Increased LCN2 (lipocalin 2) in the RPE
decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy, 19(1), 92-111. doi:10.108
0/15548627.2022.2062887.
[5] Jaberi, S. A., Cohen, A., D’Souza, C., Abdulrazzaq, Y. M., Ojha, S., Bastaki, S., & Adeghate, E. A. (2021). Lipocalin-2: Structure,
function, distribution and role in metabolic disorders. Biomed Pharmacother, 142, 112002. doi:10.1016/j.biopha.2021.112002.
[6] Jung, B. K., Park, Y., Yoon, B., Bae, J. S., Han, S. W., Heo, J. E., . . . Ryu, K. Y. (2023). Reduced secretion of LCN2 (lipocalin 2)
from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy,
19(8), 2296-2317. doi:10.1080/15548627.2023.2180202.
[7] Liu, X., Li, Y., Chen, S., Yang, J., Jing, J., Li, J., . . . Nie, H. (2023). Dihydromyricetin attenuates intracerebral hemorrhage by reversing the effect of LCN2 via the system Xc- pathway. Phytomedicine, 115, 154756. doi:10.1016/j.phymed.2023.154756.
[8] Marakala, V. (2022). Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury - A systematic review. Clin Chim Acta,
536, 135-141. doi:10.1016/j.cca.2022.08.029.
[9] Romejko, K., Markowska, M., & Niemczyk, S. (2023). The Review of Current Knowledge on Neutrophil Gelatinase-Associated
Lipocalin (NGAL). Int J Mol Sci, 24(13). doi:10.3390/ijms241310470.
[10]Su, H., Guo, H., Qiu, X., Lin, T. Y., Qin, C., Celio, G., . . . Chen, X. (2023). Lipocalin 2 regulates mitochondrial phospholipidome
remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun, 14(1), 6729. doi:10.1038/s41467-023-42473-2.
[11]Wen, Y., & Parikh, C. R. (2021). Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci, 58(5),
354-368. doi:10.1080/10408363.2021.1879000.
[12]Yao, F., Deng, Y., Zhao, Y., Mei, Y., Zhang, Y., Liu, X., . . . Ma, L. (2021). A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat Commun, 12(1), 7333. doi:10.1038/s41467-021-27452-9.
[13]Zhou, L. T., Liu, D., Kang, H. C., Lu, L., Huang, H. Z., Ai, W. Q., . . . Zhu, L. Q. (2023). Tau pathology epigenetically remodels
the neuron-glial cross-talk in Alzheimer’s disease. Sci Adv, 9(16), eabq7105. doi:10.1126/sciadv.abq7105.
DOI: http://dx.doi.org/10.18686/nursing.v12i4.310
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yi Gao,Hailong Dong,Chong Lei